Annals of Thoracic Medicine Official publication of the Saudi Thoracic Society, affiliated to King Saud University
 
Search Ahead of print Current Issue Archives Instructions Subscribe e-Alerts Login 
Home Email this article link Print this article Bookmark this page Decrease font size Default font size Increase font size


 
Table of Contents   
ORIGINAL ARTICLE
Year : 2020  |  Volume : 15  |  Issue : 4  |  Page : 215-222
Obstructive sleep apnea screening in young people: Psychometric validation of a shortened version of the STOP-BANG questionnaire using categorical data methods


1 Department of Nursing, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
2 Department of Physiotherapy, Fatima College of Health Sciences, Al Mafraq, Abu Dhabi City, United Arab Emirates; Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
3 Department of Physiotherapy, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
4 Department of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University (Mizan Campus), Mizan-Aman, Ethiopia
5 Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
6 The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh; The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation, King Saud University, Saudi Arabia
7 Somnogen Canada Inc, College Street, Toronto, ON, Canada

Date of Submission28-Dec-2019
Date of Acceptance06-Mar-2020
Date of Web Publication10-Oct-2020

Correspondence Address:
Dr. Ahmed S Bahammam
Department of Medicine, University Sleep Disorders Center, College of Medicine, King Saud University, PO Box: 225503, Riyadh 11324
Saudi Arabia
Login to access the Email id


DOI: 10.4103/atm.ATM_389_19

Rights and Permissions

   Abstract 


BACKGROUND: The STOP-BANG is an easily administrable questionnaire for the screening of obstructive sleep apnea in adults, which may be adapted for use by young people. Here, we assessed the psychometric properties of the STOP-BN, a shortened version of the STOP-BANG questionnaire, using categorical data methods.
METHODS: Four hundred and three young people (age 20.71 ± 1.93 years) were selected by random sampling to participate in this cross-sectional study. Participants completed the STOP-BN, a tool for recording social and demographic characteristics, and the Epworth Sleepiness Scale (ESS), a measure of daytime sleepiness. The obtained data were analyzed using categorical data methods.
RESULTS: A two-factor model was identified for the STOP-BN, using the Kaiser's criteria (eigenvalue >1) and the screen test. However, the parallel analysis based on minimum rank, and the cumulative variance criteria (>40%) identified an one-factor model. Factor loadings ranged from 0.364 to 0.745. The identified two-factor model showed acceptable fit as the reported goodness of fit index and weighted root mean square residual were in the ideal range, and the comparative fit index was close to the ideal range. Greatest lower bound to reliability for two factors of the STOP-BN was 0.67 and 0.67, indicating an acceptable internal consistency. A weak to a nonsignificant correlation between the ESS and the STOP-BN score was demonstrated, favoring STOP-BN's divergent validity.
CONCLUSION: Categorical methods support the psychometric validity of the STOP-BN in the study population.


Keywords: Factor analysis, greatest lower bound to reliability, psychometric validity, questionnaire, screening, validation


How to cite this article:
Manzar MD, Hameed UA, Alqahtani M, Albougami A, Salahuddin M, Morgan P, Bahammam AS, Pandi-Perumal SR. Obstructive sleep apnea screening in young people: Psychometric validation of a shortened version of the STOP-BANG questionnaire using categorical data methods. Ann Thorac Med 2020;15:215-22

How to cite this URL:
Manzar MD, Hameed UA, Alqahtani M, Albougami A, Salahuddin M, Morgan P, Bahammam AS, Pandi-Perumal SR. Obstructive sleep apnea screening in young people: Psychometric validation of a shortened version of the STOP-BANG questionnaire using categorical data methods. Ann Thorac Med [serial online] 2020 [cited 2020 Oct 24];15:215-22. Available from: https://www.thoracicmedicine.org/text.asp?2020/15/4/215/297706




Obstructive sleep apnea (OSA) is a sleep-related breathing disorder characterized by the collapse of the upper airways during sleep, resulting in intermittent hypoxemia. The prevalence of this significant problem is reported to range from 2% to 26% in the general population[1] and 7%–10% in patients undergoing surgeries.[2] Recent systematic reviews have reported a prevalence of OSA between 15% and 76% in children and adolescent populations.[3] OSA adversely affects an individual's health and may lead to significant health concerns including sudden cardiac death,[4] and increased risk of hypertension, diabetes, and mortality.[5] Previous studies have also reported OSA as a predictor of work disability[6] and a risk factor for occupational injuries.[7] These serious consequences can be prevented if OSA is identified and treated appropriately. However, OSA is continuing to be an under-diagnosed condition.[8]

The gold standard diagnostic test of OSA is polysomnography (PSG), usually conducted overnight in a specialized facility with costly equipment and trained staff. Waiting to get PSG performed may lead to significant delays in diagnosis. Screening tools provide a cheap and accessible method of identifying patients with OSA or those at risk of OSA. Several such screening tools are already developed and tested for utility;[9],[10],[11] however, they have been criticized as being lengthy, complicated, and requiring upper airway assessment.

In response to the need for a simple tool to identify those at risk of OSA, Chung et al. developed and validated a convenient, concise, and easy to administer questionnaire called the STOP-BANG.[12] Although this questionnaire was initially developed and validated in surgical patients, the tool was further tested and validated in several other clinical populations.[13] Moreover, the tool was cross-culturally adapted and validated for use in various linguistic and cultural groups.[14],[15],[16],[17] Two shortened versions, namely STOP and BOAH, both having 4-item from the original STOP-BANG, have been validated in some populations.[12],[18] The STOP questionnaire consists of items to record subjective reports of loud snores, tiredness, episodes of apnea/stopped breathing observed by others, and high blood pressure.[12] The BOAH questionnaire consists of items related to body mass index (BMI), observed apnea, age above 50 years, and high blood pressure.[18] Both versions have clinical usefulness in identifying cases of OSA.[12],[18]

Previous studies on the psychometric characterization of the STOP-BANG and its shortened versions, however, are limited to the test-retest reliability, concurrent validity, and internal consistency assessments. Moreover, recent studies on the screening properties of the STOP questionnaire have shown inadequate diagnostic validity in a population of OSA patients with atrial fibrillation.[19] Hence, further investigations on its internal consistency, factorial validity, and divergent validity, especially taking consideration of the categorical nature of the STOP-BANG scoring, are needed. The factorial validity assessment helps to establish the relationship between item scores and the validity of the theoretical construct. Issues of multicollinearity, singularity, and redundancy of terms are addressed in factor analysis, which helps to establish an interpretation of item scores.[20] A systematic search of the literature did not retrieve studies that have thoroughly assessed the factorial validation of either the STOP-BANG or its shortened versions (i.e., STOP and BOAH), which identified a need for factorial validation of the tool. Moreover, we could not identify OSA assessment tools specifically designed to identify/screen young people populations who are at OSA risk.

The present study was, therefore, designed to test the factorial validity, reliability, and divergent validity of an abridged version of the STOP-BANG, referred to as the STOP-BN, in a population of young people who may be at risk of developing OSA.


   Methods Top


Ethics

The Institutional Ethics Committee, Mizan-Tepi University, Ethiopia, approved the design and implementation of this study. All participants were provided with a study information sheet and gave written informed consent after explanation of the procedures and objectives of the study, which followed the Helsinki guideline of 2002.

Participants and research design

In this cross-sectional research, a simple random sampling methodology was used to recruit adult participants from the students' pool of the main campus of the Mizan-Tepi University located at Mizan town, Ethiopia. All the questionnaires were in English, as it is the medium of instruction in the Ethiopian federal universities. Moreover, the use of questionnaires in Amharic, i.e., the official language of Ethiopia is practically difficult because reading proficiency of Amharic varies among students who come from different linguistic groups. Participants with <18 years of age were excluded from the study because this would have necessitated taking of consent from their parents. No other exclusion criteria were employed.

Procedures and measures

A tool to record social and demographic characteristics seeking data on participant age, gender, ethnicity (Amhara, Tigray, Oromo, Keffa, Bench, and Others), and areas of study. Participants also completed a paper-based Epworth Sleepiness Scale (ESS) and an English version of the STOP-BN questionnaire.

STOP-BN questionnaire

This study used the 6-item self-administered STOP-BN questionnaire [Figure 1]. The STOP-BN is a short version of the 8-item STOP-BANG questionnaire designed to screen patients with/at risk of OSA.[12] Items in the STOP-BN questionnaire assess for snoring, fatigue/tiredness during the day, reports of stopped breathings/apneas, high blood pressure, BMI, and neck circumference (NECK). All items are scored using dichotomous response options of yes/no. A count of 0 or 1 is assigned to NO and YES responses, respectively, resulting in a total score of 6.[12] As shown in [Figure 1], two items were deleted from the original the STOP-BANG questionnaire; one item for irrelevance, i.e., age above 50 years is not applicable for young people.[12] The second item was deleted because of the statistical consideration of the low communality value of 0.04 which was less than 0.2 as well as low factor loadings, which were 0.17 and 0.09 for both factors, which were again less than the minimum recommended value of 0.3.[21],[22]
Figure 1: Schematic of questionnaire adaptation

Click here to view


Epworth Sleepiness Scale

ESS is a self-administered questionnaire developed to assess the daytime sleepiness. The questionnaire has eight items, which assess a participant's usual chance of dozing off or falling asleep during eight different everyday activities. Scoring for each item is done on a 4-point scale with scores ranging from 0 to 3, resulting in an overall maximum ESS score of 24. Higher ESS scores represent higher daytime sleepiness. The acceptable psychometric characteristics of ESS have been confirmed in several previous studies.[23],[24],[25] ESS was found to have adequate psychometric validity for a unidimensional construct with good internal consistency, discriminant validity, and adequate item discrimination and distribution among Ethiopian university students.[26]

Statistical analysis

The Statistical Package for the Social Sciences version 23.0 (IBM® SPSS® Statistics V23.0., Chicago, IL, USA), and Factor version 10.8.04 developed by at the Rovira i Virgili University, Tarragona Spain were used for analyzing the data. Descriptive statistics (frequency, mean, percentages, range, and standard deviation) were used for examining and summarizing the participant characteristics. Univariate item distributional properties of the STOP-BN questionnaire were inspected using skewness and kurtosis, whereas, multivariate distribution was assessed using Mardia's skewness and Mardia's kurtosis. Homogeneity and item discrimination were tested using Spearman correlations between STOP-BN items and total score.

Factor analysis was conducted once the sample was found to be adequate and suitable for factor analysis. Suitability of the data for factor analysis was tested using Bartlett's Test, Determinant, Kaiser-Meyer-Olkin Test for assessing the adequacy of a sample (KMO) (95% confidence interval), communality, and the correlation coefficient between items, which confirmed that sample is suitable and adequate for factor analysis. Next, an exploratory factor analysis (EFA) was conducted using categorical data methods, followed by a fit indices analysis.

Given the dichotomous nature of the STOP-BN responses, the tetrachoric correlations matrix (estimated using bootstrap sampling) for inter-item scores was used for factor analysis. EFA was conducted using diagonally weighted least squares (RDWLS) with Promin rotation. Factor retention measures included Kaiser's criteria of Eigenvalue 1 or above, the Cumulative variance explained criteria (>40%), Scree test and the robust parallel analysis based on minimum rank. Reliability was evaluated by internal consistency using the measures of the greatest lower bound (GLB) to reliability. The divergent validity of the STOP-BN was assessed by evaluating the correlations with the ESS score.

The goodness of fit was tested on two models; a 1-Factor and a 2-Factor model, as two of the factor extraction measures favored the 1-Factor model, while two others supported the 2-Factor structure. The goodness of fit of the model to the data was tested using robust mean and variance-adjusted Chi-square (χ2) and the χ2 statistic to the degree of freedom ratio (χ2/df). Besides, multiple fit indices were employed as per standard recommendations.[27],[28],[29] These indices included discrepancy functions, such as weighted root mean square residual (WRMR) and absolute fit index (the goodness of fit index [GFI] and comparative fit index [CFI]). The values indicating acceptable and/or excellent fit were determined by previously published guidelines.[28],[30] These values included a P > 0.05 for χ2, the χ2/df <5, the GFI > 0.95, the CFI > 0.95, and the RMSEA < 0.05. To be considered statistically significant, P < 0.05 was used in all analyses.


   Results Top


Participant characteristics and the STOP-BN descriptive statistics

The summary details of the participants' demographic and sleepiness (ESS) characteristics are shown in [Table 1]. A total of 403 university students, both males and females, with a mean age of 20.71 ± 1.93 participated in the study. Male participants constituted 68% of enrolled young people participants. According to the ESS, the majority of the participants (68%) reported a normal level of daytime sleepiness (ESS < 10), whereas a minority (17%) reported mild-to-severe excessive daytime sleepiness [Table 1].
Table 1: Participant characteristics

Click here to view


Univariate descriptive statistics along with communality and factor loading values are presented in [Table 2]. The values of skewness and kurtosis indicated the applicability of categorical data analysis methods for factor analysis.[31] As shown, four STOP-BN questionnaire items had skewness more than 1.0 and five had a kurtosis index of more than 1.0. As a high proportion of items, i.e., 4 out of 6 items had skewness issues, therefore, GLB to reliability was estimated for assessing internal consistency.[32] Next, the correlations were statistically significant (P < 0.05) between individual STOP-BN item scores and total STOP-BN score with a range of r = 0.17–0.66 [Table 2].
Table 2: Univariate descriptive statistics, communality, and factor loadings of the STOP-BN Questionnaire scores in young people

Click here to view


Factorial validity

As shown in [Table 3], the results of Bartlett's test (X2(df = 15) = 148.7, P < 0.001), determinant score (0.69), and KMO test of sampling adequacy (0.58) indicated that the STOP-BN scores in the studied sample fulfilled the conditions for factor analysis.[33] To further confirm the suitability of factor analysis, problems of multicollinearity and singularity were tested with inter-item correlations.[34] The inter-item correlations correlations were found to be significant with weak-to-moderate coefficients between the STOP-BN questionnaire items (r = 0.07–0.54, P < 0.05). Moreover, as presented in [Table 2], all the STOP-BN questionnaire items showed sufficient communality values of above 0.2, for retention in the factor analysis.[21]
Table 3: Multivariate descriptive, sample size adequacy, and reliability measures of the STOP-BN Questionnaire scores in young people

Click here to view


The results of the EFA are presented in [Table 4]. A 2-Factor model was identified using the following test and criteria: The Kaiser's criteria and the screen test. However, the parallel analysis based on minimum rank, which is one of the robust measures of factor retention, and the cumulative variance criteria (>40%) identified a 1-Factor model [Table 4]. Factor loadings are reported in [Table 2]; the loadings ranged from 0.364 to 0.745.
Table 4: Fit statistics of the of the STOP-BN questionnaire scores in young people

Click here to view


The results of model fit indices are presented in [Table 5]. The identified 2-Factor model showed an acceptable fit, as the reported GFI and WRMR were in the ideal range and the CFI was close to the ideal range [Table 5]. However, the χ2 was significant, indicating no absolute fit.[30] However, the χ2/df was lower for the 2-Factor model.
Table 5: Divergent validity: Correlation between the STOP-BN questionnaire and Epworth sleepiness scale scores in young people

Click here to view


Internal consistency

Internal consistency results are presented in [Table 6]. The GLB for 1-Factor, and 2-Factor models were 0.67 and 0.67, respectively. The value of GLB (0.82) indicated acceptable to adequate internal consistency of the STOP-BN.[35],[36]
Table 6: Summary of the factor extraction measures used in exploratory factor analysis of the STOP-BN Questionnaire scores in young people

Click here to view


Divergent validity

The correlation between STOP-BN scores and the ESS scores was either nonsignificant (for three items) or significant but weak, such as those between ESS score and tiredness during the day (r = 0.26, P < 0.01), observed apnea (r = 0.14, P < 0.01), STOP-BN: factor- 1 (r = 0.23, P < 0.01), and the total STOP-BN score (r = 0.18, P < 0.01) [Table 5].


   Discussion Top


The present study is the first to use factor analysis to determine the dimensionality of an abridged form of the STOP-BANG in a population of young people. This is also the first study to investigate psychometric characteristics of the STOP-BN tool using the framework of categorical data analytical methods, considering the dichotomous nature of the tool. The results indicate that the STOP-BN tool follows a two-dimensional model and that it has acceptable internal consistency and factorial validity, adequate internal homogeneity, adequate divergent known group validity, and strong item discrimination in the studied population. The psychometric validity of the STOP-BN suggests that a measure based on the consideration of snoring, tiredness, apnea, medication for high blood pressure, BMI limit (>35 kg/m2), and the neck circumference limit (>16 inches) may be adequate to screen OSA in the study population. However, this need to be further established by evaluating diagnostic validity of the STOP-BN vis-a-vis a concurrent measure of a standard polysomnographic assessment.

Factorial validity

Factorial validation confirmed a two-dimensional construct of the STOP-BN in the study population with three items loading on each of the two factors. The moderate-to-strong level of correlation between the factors and their respective items further support the 2-Factor structure of the STOP-BN in the population. A closer examination of the two factors and their respective items do seem to support the statistical conclusion. All three items, i.e., SNORE, TIREDNESS during the day, and OBSERVED sleep apnea, that load together on Factor-1 can be broadly classified as symptoms that are associated with OSA. Whereas, the three items, i.e., medication for high blood pressure, BMI (>35 kg/m2) and NECK (>16 inches) are risk factors of OSA, supporting the 2-Factor theoretical construct (symptoms and risk factors) based on pathophysiological considerations. This 2-Factor solution in our study population is somewhat contrary to the conclusions by Chung et al. (2008) that all four questions of the STOP represent different dimensions.[12] Moreover, the values of factor loadings satisfy the criteria of Comrey and Lee, for the adequate level of correlation between item scores and their respective factors.[22] Interestingly, there are no previous studies that have investigated the factorial validity of the STOP-BANG. Chung et al. (2008) performed the factor analysis on items of the STOP together with items of the Berlin questionnaire[12] and used the factor loadings to finally select the four items for the STOP tool.[12] The limited number of studies investigating the factorial validity over the last decade is surprising given that dimensionality evaluations are very important in tool development and cross-cultural validity assessment.[37]

Internal consistency and item-discrimination

In terms of internal consistency, our results demonstrated that STOP-BN items provide a reliable measure for the tested sample, with a GLB value of 0.82. This estimate was selected instead of the commonly reported Cronbach's alpha or McDonald's Omega, due to the categorical nature of the STOP-BN items and asymmetric distribution of four out of the six-item scores of this scale in the study population.[32] Trizano-Hermosilla and Alvarado recommended use of the GLB in such cases.[32] Most of the previous studies investigating the psychometric properties of the STOP-BANG or STOP have reported values of Cronbach's alpha and did not report GLB; therefore, a direct comparison is not possible. GLB in our study is more than the Cronbach's alpha reported for the Portuguese version of the STOP-BANG.[38] BaHammam et al.(2015) reported a Cronbach's alpha (0.70) for the Arabic version of the STOP-BANG.[17] However, there are two significant differences to note. First, Cronbach's alpha is not the same as GLB, and second, STOP-BANG has two more items than STOP-BN. Tools with a larger number of items tend to have higher values than Cronbach's alpha.[39] The item-total correlations (correlations between individual STOP-BN items and total score) for all except one item in this study were above the recommended cutoff value of 0.3. This indicates that all STOP-BN items measure the same construct, while demonstrating sufficient item discrimination.[40]

Divergent validity

Sleepiness during daytime is a symptom usually associated with OSA. However, sleepiness and OSA represent different constructs,[41] because sleepiness may also be present in individuals without OSA, in such cases, it is associated with neuropsychological and cardiopulmonary reasons other than OSA.[41] Similarly, deficits in sleep and its quality, and periodic limb movement disorder are also commonly associated with sleepiness.[41] Moreover, in young people, insufficient sleep resulting from intrinsic or extrinsic factors often leads to daytime sleepiness.[42] All these illustrations of sleepiness associated with non-OSA conditions, explicably indicate that sleepiness and OSA are different constructs. For establishing divergent validity, scores on two measures designed to evaluate these conditions, i.e., the STOP-BN and the ESS, i.e., are expected not to correlate strongly. Therefore, the results of this study, i.e., non-significant and/or a significant but weak correlation between the ESS scores, a measure of daytime sleepiness, and the STOP-BN score, favors STOP-BN's divergent validity in the studied population.

The current study has several strengths and limitations. Given the reported high prevalence of OSA in children and young people,[3] routine screening of OSA in this population is reasonable. We believe that the results of the present study can be translated to the youth populations of similar ethnicity to screen and evaluate the presence of OSA and can also be used in situ ations where the use of nocturnal PSG is limited because of the cost or unavailability. However, further research validating the STOP-BN questionnaire in clinical populations of young people with OSA is needed to test and confirm the diagnostic validity and clinical usefulness of the tool in this and in other ethnic groups. An analysis of sensitivity, specificity, positive and negative predictive values in clinical populations, may be needed for the STOP-BN to be recommended for its widespread use in the screening of OSA in young people. It is suggested that psychometric validation in the future may benefit from the presentation of patterns across some of the important characteristics which may influence OSA. Nevertheless, we believe that the results presented in this study will be a valuable start point for further validations of the STOP-BN in young people and similar populations. The study objectives were to validate the STOP-BN in a population of young people in general, not specifically on people at risk of OSA. Although Ethiopian health care is burdened with infection-borne diseases, recent research shows an alarming increase in sleep-related disorders as well.[43],[44],[45] Therefore, this study's finding of adequate psychometric validation for a readily accessible and easily administrable tool to screen apnea in this population of young people from Ethiopia may be very helpful.


   Conclusion Top


The STOP-BN questionnaire has demonstrated a variety of acceptable psychometric characteristics in the youth population. Results of diagnostic validation measures such as sensitivity, specificity, predictive values, and likelihood ratios may be conducted in the future to test and confirm the clinical utility of the tool in the screening of young people with OSA.

Acknowledgments

We are thankful to the research division of Mizan-Tepi University and the respondents of this study. The authors would like to thank 'the Deanship of Scientific Research at Majmaah University' for supporting this work under Project Number No (RGP-2019-40). We are grateful to Prof. Frances Chung, University of Toronto and University Health Network, Toronto, ON M5G 2C4, Canada for providing permission to use the STOP-BANG questionnaire.

Financial support and sponsorship

The authors would like to thank 'the Deanship of Scientific Research at Majmaah University' for supporting this work under Project Number No (RGP-2019-40).

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Young T, Hutton R, Finn L, Badr S, Palta M. The gender bias in sleep apnea diagnosis. Are women missed because they have different symptoms? Arch Intern Med 1996;156:2445-51.  Back to cited text no. 1
    
2.
Ramachandran SK, Kheterpal S, Consens F, Shanks A, Doherty TM, Morris M, et al. Derivation and validation of a simple perioperative sleep apnea prediction score. Anesth Analg 2010;110:1007-15.  Back to cited text no. 2
    
3.
Andersen IG, Holm JC, Homøe P. Obstructive sleep apnea in obese children and adolescents, treatment methods and outcome of treatment – A systematic review. Int J Pediatr Otorhinolaryngol 2016;87:190-7.  Back to cited text no. 3
    
4.
Gami AS, Olson EJ, Shen WK, Wright RS, Ballman KV, Hodge DO, et al. Obstructive sleep apnea and the risk of sudden cardiac death: A longitudinal study of 10,701 adults. J Am Coll Cardiol 2013;62:610-6.  Back to cited text no. 4
    
5.
Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: Eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 2008;31:1071-8.  Back to cited text no. 5
    
6.
Sjösten N, Kivimäki M, Oksanen T, Salo P, Saaresranta T, Virtanen M, et al. Obstructive sleep apnoea syndrome as a predictor of work disability. Respir Med 2009;103:1047-55.  Back to cited text no. 6
    
7.
Hirsch Allen AJ, Park JE, Daniele PR, Fleetham J, Ryan CF, Ayas NT. Obstructive sleep apnoea and frequency of occupational injury. Thorax 2016;71:664-6.  Back to cited text no. 7
    
8.
Kapur V, Strohl KP, Redline S, Iber C, O'Connor G, Nieto J. Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath 2002;6:49-54.  Back to cited text no. 8
    
9.
Abrishami A, Khajehdehi A, Chung F. A systematic review of screening questionnaires for obstructive sleep apnea. Can J Anaesth 2010;57:423-38.  Back to cited text no. 9
    
10.
Amra B, Rahmati B, Soltaninejad F, Feizi A. Screening questionnaires for obstructive sleep apnea: An updated systematic review. Oman Med J 2018;33:184-92.  Back to cited text no. 10
    
11.
Tantrakul V, Numthavaj P, Guilleminault C, McEvoy M, Panburana P, Khaing W, et al. Performance of screening questionnaires for obstructive sleep apnea during pregnancy: A systematic review and meta-analysis. Sleep Med Rev 2017;36:96-106.  Back to cited text no. 11
    
12.
Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S, et al. STOP questionnaire: A tool to screen patients for obstructive sleep apnea. Anesthesiology 2008;108:812-21.  Back to cited text no. 12
    
13.
Nagappa M, Liao P, Wong J, Auckley D, Ramachandran SK, Memtsoudis S, et al. Validation of the STOP-BANG questionnaire as a screening tool for obstructive sleep apnea among different populations: A systematic review and meta-analysis. PLoS One 2015;10:e0143697.  Back to cited text no. 13
    
14.
Reis R, Teixeira F, Martins V, Sousa L, Batata L, Santos C, et al. Validation of a Portuguese version of the STOP-BANG questionnaire as a screening tool for obstructive sleep apnea: Analysis in a sleep clinic. Rev Port Pneumol (2006) 2015;21:61-8.  Back to cited text no. 14
    
15.
Sadeghniiat-Haghighi K, Montazeri A, Khajeh-Mehrizi A, Ghajarzadeh M, Alemohammad ZB, Aminian O, et al. The STOP-BANG questionnaire: Reliability and validity of the Persian version in sleep clinic population. Qual Life Res 2015;24:2025-30.  Back to cited text no. 15
    
16.
Duarte RLM, Fonseca LBM, Magalhães-da-Silveira FJ, Silveira EAD, Rabahi MF. Validation of the STOP-BANG questionnaire as a means of screening for obstructive sleep apnea in adults in Brazil. J Bras Pneumol 2017;43:456-63.  Back to cited text no. 16
    
17.
BaHammam AS, Al-Aqeel AM, Alhedyani AA, Al-Obaid GI, Al-Owais MM, Olaish AH. The validity and reliability of an Arabic version of the STOP-BANG questionnaire for identifying obstructive sleep apnea. Open Respir Med J 2015;9:22-9.  Back to cited text no. 17
    
18.
Mokros L, Kuczynski W, Gabryelska A, Bialasiewicz P, editors. BOAH–A shorter version of STOP-BANG questionnaire for prioritizing patients for polysomnography in sleep clinic. ERS International Congress 2016, 3th-7th September; London, UK: Eur Respiratory Soc 2016;48 (60S):PA2310.  Back to cited text no. 18
    
19.
Abumuamar AM, Dorian P, Newman D, Shapiro CM. The STOP-BANG questionnaire shows an insufficient specificity for detecting obstructive sleep apnea in patients with atrial fibrillation. J Sleep Res 2018;27:e12702.  Back to cited text no. 19
    
20.
Williams B, Onsman A, Brown T. Exploratory factor analysis: A five-step guide for novices. Australas J Paramed 2010;8:1-13.  Back to cited text no. 20
    
21.
Child D. The Essentials of Factor Analysis. 3rd ed. London: Contiuum International Publishing Group; 2006.  Back to cited text no. 21
    
22.
Comrey AL, Lee HB. AFirst Course in Factor Analysis. 2nd ed. New York: Psychology Press; 2013.  Back to cited text no. 22
    
23.
Imani V, Lin CY, Jalilolgadr S, Pakpour AH. Factor structure and psychometric properties of a Persian translation of the Epworth Sleepiness Scale for Children and Adolescents. Health Promot Perspect 2018;8:200-7.  Back to cited text no. 23
    
24.
Pilcher JJ, Switzer FS 3rd, Munc A, Donnelly J, Jellen JC, Lamm C. Psychometric properties of the Epworth Sleepiness Scale: A factor analysis and item-response theory approach. Chronobiol Int 2018;35:533-45.  Back to cited text no. 24
    
25.
Janssen KC, Phillipson S, O'Connor J, Johns MW. Validation of the Epworth Sleepiness Scale for children and adolescents using Rasch analysis. Sleep Med 2017;33:30-5.  Back to cited text no. 25
    
26.
Manzar MD, Salahuddin M, Alamri M, Albougami A, Khan MYA, Nureye D, et al. Psychometric properties of the Epworth Sleepiness Scale in Ethiopian University students. Health Qual Life Outcomes 2019;17:30.  Back to cited text no. 26
    
27.
Jaccard J, Wan CK, Jaccard J. LISREL Approaches to Interaction Effects in Multiple Regression. Thousand Oaks, California: Sage Publications, Inc.; 1996.  Back to cited text no. 27
    
28.
Manzar MD, BaHammam AS, Hameed UA, Spence DW, Pandi-Perumal SR, Moscovitch A, et al. Dimensionality of the Pittsburgh Sleep Quality Index: A systematic review. Health Qual Life Outcomes 2018;16:89.  Back to cited text no. 28
    
29.
Manzar MD, Zannat W, Moiz JA, Spence DW, Pandi-Perumal SR, Bahammam AS, et al. Factor scoring models of the Pittsburgh Sleep Quality Index: A comparative confirmatory factor analysis. Biol Rhythm Res 2016;47:851-64.  Back to cited text no. 29
    
30.
Hu LT, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Model 1999;6:1-55.  Back to cited text no. 30
    
31.
Muthen B, Kaplan D. A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. Br J Math Stat Psychol 1992;45:19-30.  Back to cited text no. 31
    
32.
Trizano-Hermosilla I, Alvarado JM. Best alternatives to Cronbach's alpha reliability in realistic conditions: Congeneric and asymmetrical measurements. Front Psychol 2016;7:769.  Back to cited text no. 32
    
33.
Field A. Discovering Statistics Using IBM SPSS Statistics. London: Sage; 2013.  Back to cited text no. 33
    
34.
Tabachnick BG, Fidell LS. Using Multivariate Statistics. 5th ed. Needham Height, MA: Allyn and Bacon; 2007.  Back to cited text no. 34
    
35.
McDonald RP. Test Theory: A Unified Treatment. New York: Psychology Press; 2013.  Back to cited text no. 35
    
36.
Woodhouse B, Jackson PH. Lower bounds for the reliability of the total score on a test composed of non-homogeneous items: II: A search procedure to locate the greatest lower bound. Psychometrika 1977;42:579-91.  Back to cited text no. 36
    
37.
Furr M. Scale Construction and Psychometrics for Social and Personality Psychology. London: SAGE Publications Ltd; 2011.  Back to cited text no. 37
    
38.
Fonseca LB, Silveira EA, Lima NM, Rabahi MF. STOP-Bang questionnaire: Translation to Portuguese and cross-cultural adaptation for use in Brazil. J Bras Pneumol 2016;42:266-72.  Back to cited text no. 38
    
39.
Panayides P. Coefficient alpha: Interpret with caution. Europe's J Psychol 2013;9:687-96.  Back to cited text no. 39
    
40.
Wang M, Batt K, Kessler C, Neff A, Iyer NN, Cooper DL, et al. Internal consistency and item-total correlation of patient-reported outcome instruments and hemophilia joint health score v2.1 in US adult people with hemophilia: Results from the Pain, Functional Impairment, and Quality of life (P-FiQ) study. Patient Prefer Adherence 2017;11:1831-9.  Back to cited text no. 40
    
41.
Slater G, Steier J. Excessive daytime sleepiness in sleep disorders. J Thorac Dis 2012;4:608.  Back to cited text no. 41
    
42.
Moore M, Meltzer LJ. The sleepy adolescent: Causes and consequences of sleepiness in teens. Paediatr Respir Rev 2008;9(2):114-21.  Back to cited text no. 42
    
43.
Manzar MD, Bekele BB, Noohu MM, Salahuddin M, Albougami A, Spence DW, et al. Prevalence of poor sleep quality in the Ethiopian population: A systematic review and meta-analysis. Sleep Breath. 2019. doi: 10.1007/s11325-019-01871-x. [Epub ahead of print]. PMID: 31183743.  Back to cited text no. 43
    
44.
Manzar MD, Salahuddin M, Alamri M, Maru TT, Pandi-Perumal SR, Bahammam AS. Poor sleep in concurrent users of alcohol, khat, and tobacco smoking in community-dwelling Ethiopian adults. Ann Thorac Med 2018;13:220-5.  Back to cited text no. 44
[PUBMED]  [Full text]  
45.
Manzar MD, Salahuddin M, Maru TT, Dadi TL, Abiche MG, Abateneh DD, et al. Sleep correlates of substance use in community-dwelling Ethiopian adults. Sleep Breath 2017;21:1005-11.  Back to cited text no. 45
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6]



 

Top
Print this article  Email this article
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (1,150 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Methods
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed65    
    Printed0    
    Emailed0    
    PDF Downloaded21    
    Comments [Add]    

Recommend this journal