Annals of Thoracic Medicine Official publication of the Saudi Thoracic Society, affiliated to King Saud University
 
Search Ahead of print Current Issue Archives Instructions Subscribe e-Alerts Login 
Home Email this article link Print this article Bookmark this page Decrease font size Default font size Increase font size


 
Table of Contents   
ORIGINAL ARTICLE
Year : 2011  |  Volume : 6  |  Issue : 4  |  Page : 221-226
Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms


1 Department of Pharmacology, M.P. Shah Medical College, Jamnagar, Gujarat, India
2 Department of Pulmonary Medicine, M.P. Shah Medical College, Jamnagar, Gujarat, India

Date of Submission02-Feb-2011
Date of Acceptance06-Jul-2011
Date of Web Publication12-Sep-2011

Correspondence Address:
Prashant S Dalvi
Department of Pharmacology, M.P. Shah Medical College, Jamnagar - 361 008, Gujarat
India
Login to access the Email id


DOI: 10.4103/1817-1737.84777

PMID: 21977068

Get Permissions

   Abstract 

Background: The protease-antiprotease hypothesis proposes that inflammatory cells and oxidative stress in chronic obstructive pulmonary disease (COPD) produce increased levels of proteolytic enzymes (neutrophil elastase, matrix metalloproteinases [MMP]) which contribute to destruction of parenchyma resulting in progressive decline in forced expiratory volume in one second. Doxycycline, a tetracycline analogue, possesses anti-inflammatory properties and inhibits MMP enzymes.
Objectives: To assess the effect of 4 weeks doxycycline in a dose of 100 mg once a day in patients of moderate to severe COPD with stable symptoms.
Methods : In an interventional, randomized, observer-masked, parallel study design, the effect of doxycycline (100 mg once a day for 4 weeks) was assessed in patients of COPD having stable symptoms after a run-in period of 4 weeks. The study participants in reference group did not receive doxycycline. The parameters were pulmonary functions, systemic inflammation marker C-reactive protein (CRP), and medical research council (MRC) dyspnea scale. Use of systemic corticosteroids or antimicrobial agents was not allowed during the study period.
Results: A total of 61 patients completed the study (31 patients in doxycycline group and 30 patients in reference group). At 4 weeks, the pulmonary functions significantly improved in doxycycline group and the mean reduction in baseline serum CRP was significantly greater in doxycycline group as compared with reference group. There was no significant improvement in MRC dyspnea scale in both groups at 4 weeks.
Conclusion: The anti-inflammatory and MMP-inhibiting property of doxycycline might have contributed to the improvement of parameters in this study.


Keywords: Anti-inflammatory, C-reactive protein, doxycycline, dyspnea, matrix metalloproteinase, respiratory function tests


How to cite this article:
Dalvi PS, Singh A, Trivedi HR, Ghanchi FD, Parmar DM, Mistry SD. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Ann Thorac Med 2011;6:221-6

How to cite this URL:
Dalvi PS, Singh A, Trivedi HR, Ghanchi FD, Parmar DM, Mistry SD. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Ann Thorac Med [serial online] 2011 [cited 2014 Sep 22];6:221-6. Available from: http://www.thoracicmedicine.org/text.asp?2011/6/4/221/84777


The airflow limitation in chronic obstructive pulmonary disease (COPD) is usually progressive and associated with an abnormal inflammatory response of the lung to noxious particles or gases. [1] Current management includes smoking cessation, bronchodilators, corticosteroids, and pulmonary rehabilitation. Smoking cessation is the only intervention in COPD that is associated with decreased progression of disease. The protease-antiprotease model proposes that inflammatory cells and oxidative stress in COPD result in increased levels of proteolytic enzymes (matrix metalloproteinases [MMP], neutrophil elastase) and decreased levels of antiproteases (a-1-antitrypsin, tissue inhibitors of metalloproteinases [TIMP]) which result in destruction of lung parenchyma leading to progressive decline of forced expiratory volume in one second (FEV 1 ). [2],[3] MMPs are zinc-dependent endopeptidases of which MMP-1,-2,- 8, and -9 have shown major role in pathogenesis of COPD. The concentrations of MMP-1,-8, and -9 are increased in bronchoalveolar lavage fluid from patients of COPD.[4],[5]

Doxycycline, a tetracycline analogue, has shown to possess immunomodulatory properties in addition to its broad-spectrum antimicrobial activity. Doxycycline is a potent inhibitor of MMP enzymes, particularly MMP-8 and MMP- 9. [6],[7],[8],[9] Studies have demonstrated reduction of MMP-9 levels by doxycycline in lung tissues of rats. [10],[11] Other immunomodulatory properties of doxycycline include suppression of neutrophil migration, antiapoptotic activity, decrease in monocyte chemoattractant protein-1, and increase in the expression/secretion of the natural inhibitor of MMP (TIMP-1). [12],[13],[14] Doxycycline has shown beneficial results in periodontitis, facial acne, recurrent oral ulceration, rheumatoid arthritis, and corneal erosions on account of its non-antimicrobial properties. [14],[15],[16],[17],[18] Long-term treatment with doxycycline is well tolerated. Adverse effects to doxycycline include photosensitivity and gastrointestinal disturbances. [19] It seemed reasonable to assume that drug possessing anti-inflammatory and MMP-inhibiting activity like doxycycline may have beneficial effect on lung function, systemic inflammation, and dyspnea in patients of COPD having stable symptoms. The present study was designed to study the effect of doxycycline in a dose of 100 mg once a day in patients of stable COPD.


   Methods Top


The study was conducted in the outpatient department of pulmonary medicine of M. P. Shah medical college and Guru gobindsingh government hospital, Gujarat, India. The study protocol was approved by the institutional ethics committee and designed in accordance with good clinical practice. Written informed consent was obtained from all the participants included in the study. The study was carried out between July 2009 and February 2010.

In the present study, an interventional, randomized, observer-masked, comparative design was used to investigate the efficacy of doxycycline in addition to standard treatment in patients of stable COPD. Patients included had age >40 years, smoking history >10 pack years, and were classified as stage II or III on GOLD classification for severity. Patients presenting with acute exacerbation of COPD as defined by Anthonisen et al., [20] and patients who had moderate/severe exacerbation in last 4 weeks as defined by severity scale proposed by Cazzola et al., [21] were excluded. Patients with active respiratory disease other than COPD (tuberculosis, pneumonia, lung malignancies, bronchial asthma), acute systemic/local infection, cardiac and gastrointestinal disorders were excluded. Patients on systemic corticosteroids at the time of screening were also excluded. The primary endpoint was change in post-bronchodilator FEV 1 from baseline to end of 4 weeks, and secondary endpoints were changes in forced expiratory volume (FVC), serum C-reactive protein (CRP), and medical research council (MRC) dyspnea scale after 4 weeks.

At initial screening visit, patients were assessed by history, clinical examination, pulmonary function tests, chest X-ray, and sputum examination. Data regarding smoking history and exacerbations were recorded. Patients who qualified inclusion and exclusion criteria and gave written informed consent underwent a run-in period of 4 weeks. During run-in period, all the study participants received treatment with deriphyllin (100 mg thrice a day), inhaled salbutamol and ipratropium. A run-in period of 4 weeks was selected because physiological changes associated with acute exacerbation return to baseline values in 70 to 74% patients at 4 weeks. [22] Use of inhaled corticosteroids and long-acting b2 agonists was allowed during the run-in and study period.

After run-in period, at baseline visit, patients were assessed for values of pulmonary functions by spirometry. Assessment of dyspnea was done using MRC dyspnea scale and blood sample was collected for serum CRP estimation. Subsequently, the study participants were randomized using blocked randomization method with the help of computer software into the following two groups: Group 1 (Doxycycline group): Capsule doxycycline 100 mg once a day daily for 4 weeks in addition to run-in period treatment; Group 2 (Reference group): Continued to receive treatment received in run-in period. Systemic corticosteroids or antibiotics were not allowed during the study period until clinical necessity arouse in which the patient was then excluded from the study.

After study intervention period of 4 weeks, patients were followed up and assessed for lung functions, MRC dyspnea scale, and serum CRP. Post-bronchodilator FEV 1 and FVC were recorded after administration of 200 μg of salbutamol, using metered dose inhaler. Each subject performed a minimum three acceptable FVC measures. The greatest FEV 1 and corresponding FVC value were used in subsequent analysis. Serum CRP was estimated using immunoturbidimetry on the same day of collection of sample.

Statistical analysis

A total of 36 patients were required in each group with the power of the study as 80% to detect a difference of 20% between the two groups in post-bronchodilator FEV 1 at 4 weeks. Baseline variables were compared using chi-square or Fisher's exact test for categorical variables and unpaired t test or Mann-Whitney test for continuous variables. Statistical evaluations were accomplished with paired t tests for before and after values of pulmonary functions for both groups and unpaired t test for difference in change among both groups. Change in serum CRP was expressed in percent change from baseline and compared using unpaired t test among both groups. Pre- and post-MRC dyspnea scores were compared using Wilcoxon signed rank test. P value <0.05 was considered as significant.


   Results Top


At baseline visit, 72 patients were randomized equally to two groups. During the study period, six patients were lost to follow-up and five received antibiotics/systemic corticosteroids on account of moderate to severe exacerbations. Thus, these 11 patients were excluded and data of remaining 61 patients were analyzed [Figure 1]. There was no significant difference in baseline variables of both groups at the end of run-in period [Table 1].
Table 1: Baseline characteristics of study participants


Click here to view
Figure 1: Trial profile

Click here to view


At baseline, there was a difference of 29 ml in the mean FEV 1 among two groups. At 4 weeks, mean FEV 1 increased significantly by 153 ml in doxycycline group (P < 0.001, 95% CI = -0.190 to -0.116) and decreased by 33 ml in reference group [Table 2],[Figure 2]. There was significant difference in the mean change in FEV 1 (∆FEV 1 ) in both groups ( P < 0.001, 95% CI = 0.140 to 0.234). There was significant increase in FEV 1 % predicted, FVC, and FVC % predicted from baseline values at 4 weeks in doxycycline group. Lung function parameters did not improve in reference group. There was significant difference in mean change in FEV 1 % predicted, FVC, and FVC % predicted among both groups. The mean percent reduction in baseline serum CRP was 45.59 ± 4.6 and 15.78 ± 5.8 in doxycycline and standard group, respectively. There was significant difference in reduction of serum CR P values between both groups. MRC dyspnea did not significantly decrease from baseline in both the groups at 4 weeks [Table 3].
Table 2: Change in pulmonary functions and serum CRP


Click here to view
Table 3: Change in MRC dyspnea scale


Click here to view
Figure 2: Change in mean pulmonary functions. Error bars represent SE. P value by paired t test for pre (baseline) and post (after 4 weeks) values. Straight line - doxycycline group, dotted line - reference group. Screening: -4 weeks, baseline: 0 week, post-intervention: 4 weeks

Click here to view



   Discussion Top


Doxycycline in a dose of 100 mg once a day for duration of 7 to 10 days has been used as an antimicrobial agent to treat acute exacerbations in COPD. The present study is first of its kind in which efficacy of 4 weeks doxycycline was assessed in patients of stable COPD. All the study participants were male patients because of inclusion of only those patients who had smoking history of more than 10 pack-years and the fact that smoking is much less common in females in India. Both the groups were comparable in terms of drop-outs and withdrawals during the study period.

Doxycycline demonstrated improvement in lung function parameters for which antimicrobial action of doxycycline is unlikely to be responsible. The present study excluded patients with acute exacerbation, as defined by Anthonisen et al. [20] This classification indicates likelihood of bacterial infection as cause of an exacerbation. The study also excluded patients who had moderate to severe exacerbations in last 4 weeks according to event-based definition given by Cazzola et al. [21] Patients having infective pathology were also excluded. A randomized controlled trial has provided evidence for significant beneficial effect of antibiotics only in those COPD patients who present with increase in all of the following cardinal symptoms: Dyspnea, increased sputum volume and sputum purulence [20] or who present with sputum purulence, and at least one of other two cardinal symptoms. [23] In conclusion, there is less possibility that antimicrobial action might have contributed to beneficial effect of doxycycline in improving lung function parameters in the present study.

Improvement in lung function parameters in present study might be the result of anti-inflammatory and MMP-inhibiting activity of doxycycline. A study demonstrated that the collagenase activity in tracheal aspirates from horses suffering from COPD was sensitive to doxycycline inhibition. [24] Study by Nordstrom et al. [14] tested clinical response to 3 months doxycycline in concert with collagenase activity in patients of rheumatoid arthritis. Significant reduction in joint score and pain visual analogue scale was seen as early as 6 weeks. In the same study, saliva samples showed significant reduction in collagenase (MMP-8) activity at 12 weeks. Doxycycline has shown improvement in pulmonary disorders in which dysregulated MMP activity is held responsible. Maugban et al. [25] studied the effect of addition of doxycycline to immunosuppressive therapy in lung transplantation patients with recurrent acute rejections or obliterative bronchiolitis (OB/BOS). This was associated with improved lung functions in serial pulmonary function tests. OB/BOS is associated with elevated MMP- 9levels and the immunomodulatory effect of doxycycline might have been responsible for the beneficial effect. Long treatment with doxycycline in patient of idiopathic pulmonary fibrosis was associated with improvement in symptoms, physiological and radiological parameters. [26] Doxycycline inhibits neutrophil collagenase (MMP-8) and MMP-9 at doses readily attainable by therapeutic doses. It achieves similar concentration in lungs and plasma. [27],[28]

Airway limitation and airway inflammation are separate and independent factors in pathophysiology of COPD. CRP reflects the total systemic burden of inflammation in patients of COPD. [29] Eight-year follow-up study of large cohort with airway obstruction showed that the increased CRP levels are strong predictor of COPD hospitalization and deaths [30] Increased serum CRP levels have been associated with all-cause mortality in patients with mild to moderate COPD, reduced lung function, and greater FEV 1 decline. [31] The present study demonstrated significant difference in reduction of baseline serum CRP levels in doxycycline and standard group. The baseline serum CRP was higher in doxycycline group, though this was not significant. Anti-inflammatory agents like corticosteroids (inhaled fluticasone) for 2 weeks reduced baseline serum CRP levels by 50% in COPD patients who had stable symptoms in previous 3 months in a study. [32] In MIDAS trial, subantimicrobial doses of doxycycline significantly reduced serum CRP level by 47% in patients with coronary artery disease. [27] The study also demonstrated significant reduction in serum IL-6. The authors concluded that reduction in CRP due to doxycycline might be due to upstream inhibition of IL-6 or direct inhibitory effect on CRP synthesis in liver or both. IL-6 is a major signaling cytokine stimulant and induces CRP production and release by liver. Similar mechanism might be responsible for reduction in CRP in the present study.

Studies have demonstrated that dyspnea scores and lung function are distinct and separate in terms of their influence on health outcome. [33] The lack of improvement in MRC dyspnea scale despite significant increase in FEV 1 might be due to following reasons. First of all, the study intervention period might not be sufficiently long enough to change the perceived respiratory disability in patients of stable COPD. Second, association of FEV1 and MRC dyspnea scale has not been demonstrated. [34] Lastly, there could be factors other than COPD which might have contributed to dyspnea in the study participants.

Limitations of the study include short study intervention period and lack of data on effect of doxycycline on long-term clinical outcomes in COPD like symptom scores, health status, exercise tolerance, and exacerbation rates. Alternate explanation for serum CRP reduction in doxycycline group could be resolution of mild or occult infection which was not recognized prior to study. The study did not address the problem of antimicrobial resistance.

In conclusion, the study demonstrates beneficial effect of short-term doxycycline in lung function parameters and systemic inflammatory marker, CRP in patients of stable COPD.

 
   References Top

1.Global Initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease-2009. Available from: http:/www.goldcopd.com [Last accessed on 2010 Oct 15].  Back to cited text no. 1
    
2.Belvisi MG, Bottomley KM. The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): A therapeutic role for inhibitors of MMPs? Inflamm Res 2003;52:95-100.  Back to cited text no. 2
    
3.Reilly (Jr.) JJ, Silverman EK, Shapiro SD. Chronic Obstructive Pulmonary Disease. In: Casper DL, Braunwald E, editors. Harrison's Principles of Internal Medicine. New York: McGraw-Hill; 2006. p. 1547-54.  Back to cited text no. 3
    
4.Betsuyaku T, Nishimura M, Takeyabu K, Tanino M, Venge P, Xu S, et al. Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med 1999;159:1985-91  Back to cited text no. 4
    
5.Finlay GA, Russell KJ, McMahon KJ, D'arcy EM, Masterson JB, FitzGerald MX, et al0. Elevated levels of matrix metalloproteinases in bronchoalveolar lavage fluid of emphysematous patients. Thorax 1997;52:502-6.  Back to cited text no. 5
    
6.Golub LM, Suomalainen K, Sorsa T. Host modulation with tetracyclines and their chemically modified analogues. Curr Opin Dent 1992;2:80-90.  Back to cited text no. 6
    
7.Suomalainen K, Sorsa T, Golub LM, Ramamurthy N, Lee HM, Uitto VJ, et al. Specificity of the anticollagenase action of tetracyclines: Relevance to their anti-inflammatory potential. Antimicrob Agents Chemother 1992;36:227-9.  Back to cited text no. 7
    
8.Fiotti N, Altamura N, Moretti M, Wassermann S, Zacchigna S, Farra R, et al. Short term effects of doxycycline on matrix metalloproteinases 2 and 9. Cardiovasc Drugs Ther 2009;23:153-9.  Back to cited text no. 8
    
9.Zhao S, Choksuchat C, Zhao Y, Ballagh SA, Kovalevsky GA, Archer DF. Effects of doxycycline on serum and endometrial levels of MMP-2, MMP-9 and TIMP-1 in women using a levonorgestrel-releasing subcutaneous implant. Contraception 2009;79:469-78.  Back to cited text no. 9
    
10.Sochor M, Richter S, Schmidt A, Hempel S, Hopt UT, Keck T. Inhibition of matrix metalloproteinase-9 with doxycycline reduces pancreatitis-associated lung injury. Digestion 2009;80:65-73.  Back to cited text no. 10
    
11.Doroszko A, Hurst TS, Polewicz D, Sawicka J, Fert-Bober J, Johnson DH, et al. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury. Proteome Sci 2010;8:3.  Back to cited text no. 11
    
12.Raza M, Ballering JG, Hayden JM, Robbins RA, Hoyt JC. Doxycycline decreases monocyte chemoattractant protein-1 in human lung epithelial cells. Exp Lung Res 2006;32:15-26.  Back to cited text no. 12
    
13.Sapadin AN, Fleischmajer R. Tetracyclines: Nonantibiotic properties and their clinical implication. J Am Acad Dermatol 2006;54:258-64.  Back to cited text no. 13
    
14.Nordström D, Lindy O, Lauhio A, Sorsa T, Santavirta S, Konttinen YT. Anti-collagenolytic mechanism of action of doxycycline treatment in rheumatoid arthritis. Rheumatol Int 1998;17:175-80.  Back to cited text no. 14
    
15.Ciancio S, Ashley R. Safety and efficacy of sub-antimicrobial dose doxycycline therapy in patients with adult periodontitis. Adv Dent Res 1998;12:27-37.  Back to cited text no. 15
    
16.Skidmore R, Kovach R, Walker C, Thomas J, Bradshaw M, Leyden J, et al. Effects of subantimicrobial-dose doxycycline in the treatment of moderate acne. Arch Dermatol 2003;139:459-64.  Back to cited text no. 16
    
17.Skulason S, Holbrook WP, Kristmundsdottir T. Clinical assessment of the effect of a matrix metalloproteinase inhibitor on aphthous ulcers. Acta Odontol Scand 2009;67:25-9.  Back to cited text no. 17
    
18.Dursun D, Kim MC, Soloman A, Pflugfelder SC. Treatment of recalcitrant corneal erosions inhibitors of matrix metalloproteinase-9, doxycycline and corticosteroids. Am J Ophthalmol 2001;132:8-13.  Back to cited text no. 18
    
19.Smieja M, MacPherson DW, Kean W, Schmuck ML, Goldsmith CH, Buchanan W, et al. Randomised, blinded, placebo controlled trial of doxycycline for chronic seronegative arthritis. Ann Rheum Dis 2001;60:1088-94.  Back to cited text no. 19
    
20.Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med 1987;106:196-204.  Back to cited text no. 20
    
21.Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, et al. Outcomes for COPD pharmacological trials: From lung function to biomarkers. Eur Respir J 2008;31:416-69.  Back to cited text no. 21
    
22.Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000;161:1608-13.  Back to cited text no. 22
    
23.Stockley RA, O'Brien C, Pye A, Hill SL. Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD. Chest 2000;117:1638-45.  Back to cited text no. 23
    
24.Koivunen AL, Maisi P, Konttinen YT, Prikk K, Sandholm M. Collagenolytic activity and its sensitivity to doxycycline inhibition in tracheal aspirates of horses with chronic obstructive pulmonary disease. Acta Vet Scand 1997;38:9-16.  Back to cited text no. 24
    
25.Maugban T, Peterson-Short K, Truax C, Lee S, Kenyon N, Liou TG. Doxycycline improves decline in pulmonary function in OB/BOS. J Heart Lung Transplant 2009;28: S281-2.  Back to cited text no. 25
    
26.Bhattacharyya P, Nag S, Ghosh D, Roy-Chowdhury S, Bardhan S, Mukherjee A. Treatment of probable idiopathic pulmonary fibrosis with long term doxycycline, a matrix metalloproteinase inhibitor. Indian J Chest Dis Allied Sci 2007;49:180.  Back to cited text no. 26
    
27.Brown DL, Desai KK, Vakili BA, Nouneh C, Lee HM, Golub LM. Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arterioscler Thromb Vasc Biol 2004:24;733-8.  Back to cited text no. 27
    
28.Michel G, Mosser J, Olle J. Pharmacokinetics and tissue localization of doxycycline polyphosphate and doxycycline hydrochloride in the rat. Eur J Drug Metab Pharmacokinet 1984;9:149-53.  Back to cited text no. 28
    
29.Pepys MB, Hirschfield GM. C-reactive protein: A critical update. J Clin Invest 2003;111:1805-12.  Back to cited text no. 29
    
30.Dahl M, Vestbo J, Lange P, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:250-5.  Back to cited text no. 30
    
31.Man P, Connett JE, Anthonisen NR, Wise RA, Tashkin DP, Sin DD. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax 2006;61:849-53.  Back to cited text no. 31
    
32.Sin DD, Lacy P, York E, Man SF. Effects of fluticasone on systemic markers of inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004;170:760-5.  Back to cited text no. 32
    
33.Hajiro T, Nishimura K, Tsukino M, Ikeda A, Koyama H, Izumi T. Analysis of clinical methods used to evaluate dyspnea in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;158:1185-9.  Back to cited text no. 33
    
34.Bestall JC, Paul EA, Garrod R, Garnham R, Jones PW, Wedzicha JA. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999;54:581-6.  Back to cited text no. 34
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]

This article has been cited by
1 Tuberculosis, Pulmonary Cavitation, and Matrix Metalloproteinases
Catherine W. M. Ong,Paul T. Elkington,Jon S. Friedland
American Journal of Respiratory and Critical Care Medicine. 2014; 190(1): 9
[Pubmed]
2 Platelets and matrix metalloproteinases
P. Seizer,A. E. May
Thrombosis and Haemostasis. 2013; 110(5): 903
[Pubmed]
3 Doxycycline exhibits anti-inflammatory activity in CF bronchial epithelial cells
Bensman, T.J. and Nguyen, A.N. and Rao, A.P. and Beringer, P.M.
Pulmonary Pharmacology and Therapeutics. 2012; 25(5): 377-382
[Pubmed]
4 result 2 Document Biotic acts of antibiotics
Authors of Document Aminov, R.I.
Frontiers in Microbiology. 2012;
[Pubmed]



 

Top
Print this article  Email this article
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (838 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Methods
   Results
   Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed5464    
    Printed136    
    Emailed3    
    PDF Downloaded406    
    Comments [Add]    
    Cited by others 4    

Recommend this journal