Annals of Thoracic Medicine Official publication of the Saudi Thoracic Society, affiliated to King Saud University
 
Search Ahead of print Current Issue Archives Instructions Subscribe e-Alerts Login 
Home Email this article link Print this article Bookmark this page Decrease font size Default font size Increase font size


 
ORIGINAL ARTICLE
Year : 2009  |  Volume : 4  |  Issue : 2  |  Page : 54-59
Lung function changes and complications after lobectomy for lung cancer in septuagenarians


1 Institute for Lung Diseases, Clinical Center of Serbia
2 Institute for Medical Statistics, Faculty of Medicine, Belgrade, Serbia

Date of Submission04-Nov-2008
Date of Acceptance21-Nov-2008

Correspondence Address:
Dragan Subotic
Institute for Lung Diseases, Visegradska 26/20, 11000 Belgrade, Serbia

Login to access the Email id


DOI: 10.4103/1817-1737.49413

PMID: 19561925

Rights and Permissions

   Abstract 

Background: In septuagenarians, lobectomy is the preferable operation, with lower morbidity than for pneumonectomy. However, the 1-year impact of lobectomy on lung function has not been well studied in elderly patients.
Materials and Methods: Retrospective study including 30 patients 70 years or older (study group), 25 patients with chronic obstructive pulmonary disease (COPD) under 70 years (control group 1), and 22 patients under 70 years with normal lung function (control group 2) operated for lung cancer in a 2-year period. The study and control groups were compared related to lung function changes after lobectomy, operative morbidity, and mortality.
Results: Postoperative lung function changes in the elderly followed the similar trend as in patients with COPD. There were no significant differences between these two groups related to changes in forced expiratory volume in the first second (FEV 1 ) and vital capacity (VC). Unlike that, the pattern of the lung function changes in the elderly was significantly different compared with patients with normal lung function. The mean postoperative decrease in FEV 1 was 14.16% in the elderly, compared with a 29.23% decrease in patients with normal lung function ( P < 0.05). In the study and control groups, no patients died within the first 30 postoperative days. The operative morbidity in the elderly group was significantly lower than in patients with COPD (23.3% vs. 60%).
Conclusions: The lung function changes after lobectomy in the elderly are similar to those in patients with COPD. The explanation for such a finding needs further investigation. Despite a high proportion of concomitant diseases, the age itself does not carry a prohibitively high risk of operative mortality and morbidity.


Keywords: Lobectomy, lung cancer, pulmonary function


How to cite this article:
Subotic D, Mandaric D, Radosavljevic G, Stojsic J, Gajic M. Lung function changes and complications after lobectomy for lung cancer in septuagenarians. Ann Thorac Med 2009;4:54-9

How to cite this URL:
Subotic D, Mandaric D, Radosavljevic G, Stojsic J, Gajic M. Lung function changes and complications after lobectomy for lung cancer in septuagenarians. Ann Thorac Med [serial online] 2009 [cited 2020 Jan 29];4:54-9. Available from: http://www.thoracicmedicine.org/text.asp?2009/4/2/54/49413


Lung resection for lung cancer in patients in the age group of 70 years or older still represents a surgical challenge, both from the surgical and the oncological standpoint. The peak incidence age for lung cancer occurrence was around 60 years in 1987, but has now shifted to the age of 70-74 years. In addition, there is a general trend worldwide of an increasing incidence of lung cancer in the elderly. [1]

The rapidly aging population in these countries led to the increase in the number of elderly patients with lung cancer, making it the second-leading cause of cancer death among this age group. [2]

Despite a widespread belief that advanced age excludes surgery by itself, recent studies have shown that lung cancer resection can be justified in these patients, but only if properly selected. [3] Of late, the age limit for surgery has even been pushed upwards to 80 years. [4]

As pneumonectomy in the elderly definitely carries a significantly higher operative risk compared with younger patients, a broad consensus exists that lobectomy is the preferable operative procedure, rendering better survival than for conservative resection, with lower morbidity than for pneumonectomy. However, the 1-year impact of lobectomy on lung function has not been well studied in elderly patients. [5]

Having this in mind, together with data that advanced age and chronic obstructive pulmonary disease (COPD) [6] have an adverse effect on operative mortality, we intended to analyze the pattern of lung function change after lobectomy in the elderly and to compare it with a group of COPD and with a group of younger non-COPD patients. Also, the aim of the study was to analyze and discuss causes of eventual differences in operative mortality and morbidity between these groups.


   Materials and Methods Top


Retrospective study including 30 patients 70 years or older (study group), 25 patients with COPD under 70 years (control group 1), and 22 patients under 70 years with normal lung function (control group 2), who underwent a lobectomy for primary lung cancer in a 2-year period (2004 and 2005).

The structure of the study and control groups is presented in [Table 1].

Postoperative patohistology revealed that no lymph node metastases existed in 18 patients (12T2N0, 4T1N0, 2T3N0), metastases in the hilar/interlobar lymph nodes existed in 10 patients (8T2N1, 1T1N1, 1T3N1), while only two patients had metastases in the mediastinal lymph nodes (2T2N2). Squamous cell and adenocarcinoma existed in 26 and four patients, respectively.

Pre-operative work up

In the study group, pre-operative work up related to lung cancer was the same as in the control groups (standard clinical and laboratory investigations, bronchoscopy, high-resolution computed tomography of the thorax and upper abdomen, and respiratory function tests).

In the control group 1, combined bronchodilator therapy was applied. Patients with forced expiratory volume in the first second (FEV 1 ) and 100 FEV 1 /vital capacity (VC) greater than 60% at control spirometry were referred directly to surgery. Patients with FEV 1 and 100 FEV 1 /VC lower than 60% at control spirometry were subjected to perfusion scintigraphy of the lungs in order to calculate the predicted postoperative FEV 1 (ppoFEV 1 ).

In the control group 2, consisting of younger aged patients with nonimpaired lung function, no additional work up (outside the previously described related to the local and distant tumor spread) was carried out.

Data analysis

The obtained demographic and clinical data, including age, gender, pulmonary function, comorbidity, quality of life after the operation, as well as peri-operative data, consisting of surgical procedure, pathologic stage, and operative morbidity and mortality, were entered into the database.

In the study and control groups, pre-operative absolute and percent values of FEV 1 , VC, forced expiratory flows at 50% and 25% vital capacity (FEF 50 and FEF 25 ), and 100 FEV 1 /VC were compared with corresponding postoperative values, obtained at least 3-6 months after the operation. The differences between pre-operative and postoperative values of FEV 1 , VC, FEF 50 , and FEF 25 were calculated and compared between the groups.

The study and control groups were compared related to survival. Survival was estimated by the Kaplan-Meier method.

Statistics

Statistical significance of differences between the groups related to pre-operative lung function parameters was assessed by using a one-way ANOVA test. Statistical analysis of differences in lung function changes after the operation was performed using a Kruscal-Wallis test and Mann-Whitney U -test. Differences between the groups related to the existing comorbidity were assessed using a χ2 test. Within the same analysis, differences with regards to the existence of one or more than one comorbidities were assessed using a Fisher's exact test.


   Results Top


Postoperative lung function changes

In the study group, in 13/30 (43.3%) patients, the 100 FEV 1 / forced vital capacity (FVC) was <70%, representing the existence of COPD according to the GOLD criteria. Pre-operative baseline values of the lung function parameters in the analyzed groups are presented in [Table 2].

Comparison between pre-operative and postoperative lung function in the study and control groups is presented in [Table 3].

Postoperative lung function changes in the elderly followed the same trend as in patients with COPD. Although the postoperative loss in FEV 1 was clearly lower in the COPD group, there were no significant differences between these two groups related to FEV 1 and VC.

Unlike that, the pattern of the lung function changes in the elderly was significantly different compared with patients with normal lung function. The median postoperative decrease in FEV 1 , expressed as percent loss related to pre-operative values, was 14.16% in the elderly, compared with a 29.23% decrease in patients with normal lung function ( P < 0.05). The postoperative loss in VC was also significantly lower in the elderly than in patients with normal lung function (12.77%, 27.66%; P < 0.05). Although the loss in the small airways function (FEF 50 and FEF 25 ) was evidently lower in the elderly, these differences did not reach the level of statistical significance.

Operative mortality and morbidity

Comorbidity in the study and control group 1 is presented in [Table 4]. In the control group 2, there was no major comorbidity. In the study and control group 1, no comorbidity existed in 23.35% and 44% of the patients respectively. While in the study group more than one associated disease existed in 11/23 (47.82%) of the patients with comorbidity, it was registered in only 2/14 (14.28%) of the patients with comorbidity in the COPD group.

In the study and control groups, no patients died within the first 30 postoperative days. In the elderly group, postoperative complications occurred in 7/30 (23.3%) of the patients (prolonged air leak in six and partial wound dehiscence in one patient).

In the COPD goup, postoperative complications occured in 15/25 (60%) of the patients. One single complication occurred in 14 patients while only one patient had more than one complication. Prolonged air leak was registered in 10 patients as the only complication. Pulmonary embolism, respiratory insufficiency, pneumothorax, and gastric ulcer occurred in an additional four patients as a single complications while one patient experienced prolonged air leak, arrhythmia, and partial wound dehiscence.

In the control group 2, operative morbidity was 31.81%. Prolonged air leak and arrhythmia occurred in 4/22 (18.2%) and in 3/22 (13.6%) of the patients, respectively.

The obtained differences in the operative morbidity between the elderly and the COPD group are statistically significant (χ2 7.639; P < 0.001). The lower operative morbidity in the elderly compared with the control group 2 is not statistically significant (χ2 0.464; P > 0.05).

Survival

The overall survival of elderly and COPD patients is presented in [Figure 1]. Five-year survival in the elderly and the COPD group was 65.9% and 37.9%, respectively (median survival 76 ± 58 vs. 42 ± 13.3 months). Although evident, the survival difference was not statistically significant.


   Discussion Top


Incidence, patients' characteristics, selection criteria

Two facts should be pointed out when discussing lung resection for lung cancer in the elderly: First, the common practice of offering less-aggressive treatment to this subgroup of patients, including a nonoperative approach or less than an anatomic resection, led to the situation that patients ≥65 years old, with localized lung cancer, were only one-third as likely to undergo resection compared with younger patients. Indeed, for each decade of life after 65 years of age, the likelihood of undergoing resection declined by 65% [7] ; second, the previously mentioned increase in the life expectancy for octogenarians (8.6 years in the US) translates into an overall 5-year survival of 80% for an age- and gender-matched population. As the majority of this time is anticipated to be years of active and independent life, it becomes clear that an octogenarian's survival and quality of life will be influenced mostly by their cancer-related mortality rather than by their age. [8]

Related to these facts, the elderly group in the present study accounts for 7.15% of a total number of 419 patients with lobectomy (389) and bilobectomy (30) in the analyzed period. This proportion corresponds to that in rare surgical series containing these data. [9]

Our study confirmed that 26/30 (86.6%) of the patients who were alive during the 2-year follow-up period were capable of active and good quality life, including regular visits to the outpatient clinic.

In the study group, the M:F ratio was 3.28. Although this ratio varies between 1.6 and 11 according to the literature, in all studies, the male gender is significantly higher in the elderly compared with younger patients. In some studies, in the younger group, the proportion of women is twice as high as in the older group. [10]

In our study, although the mean age in control groups was younger (58.9 and 56.7 years) than in the study group, the M:F ratio did not follow the aforementioned pattern, probably because those were not true "younger" groups. Even among seven patients aged 39-45 years, we did not confirm a recently reported pattern of decrease in the M:F ratio from 1.62 to 0.89 in the group <40 years old. [11]

As already mentioned, calculation of the predicted ppoFEV 1 was mandatory because it was shown long ago that an estimated ppoFEV 1 value under 43% correlated with the need for home oxygen and that the probability of survival in older patients with low calculated ppoFEV1% was only 17%. [12] Although the association of low predicted pulmonary capacity for carbon monoxide diffusion (DLco), not only with the need for hospitalizations and home oxygen but also with operative mortality [13] was clearly shown, in our series, DLco was not routinely carried out, except in a few patients with mild to moderate obstructive ventilatory disorders. Arterial blood gas analyses were mandatory in our group of the elderly, although rare studies demonstrated that arterial blood gases alone were not a predictor of postoperative complications. [14]

Related to the staging status in the elderly group, predominance of T1/T2 and N0/N1 tumors does not reflect the true incidence of these tumors in the overall elderly population because the patient selection was limited to patients with lobectomy. For the same reason, we did not compare the staging status between the study and the control groups. Such a comparison would nevertheless make sense in the absence of the aforementioned limitations because some recent studies showed no statistical difference between younger and older cancer patients, contrary to some studies performed 10 years ago in which young patients had a relatively delayed diagnosis and more advanced disease. [15] This could be due to the slow progress of lung cancer in the elderly or to the tendency of younger patients to ignore or misinterpret some changes in their health. The predominance of the squamous cell carcinoma (86.6% patients) in the present study confirms previous reports that found this tumor type as the most frequent in the elderly.

Postoperative lung function changes

The reason for specifically addressing the pattern of lung function change after lobectomy in this study was as follows: The well-known early functional deficit both in FEV 1 and FVC after lobectomy, followed by later functional recovery at 6 months, was based on studies that included patients with an average age of only 64.2 years. [16] The mean age of 72.2 years (70-76) in our group gave the opportunity to analyze these functional changes, still not fully elucidated, but in an older group of patients.

We recently demonstrated smaller loss in FEV 1 and improved function of the small airways in patients with COPD compared with patients with normal lung function, [17] a finding that was consistent with recent reports. [18] But, the similar trend in the postoperative function changes in the elderly and in patients with COPD, as demonstrated in the present study, is not easy to be explained. It could be only in part due to the proportion of patients with COPD in the elderly group - 13/30 (43.3%). This percentage of COPD patients could influence the pattern of the lung function change by approaching it to that in COPD patients, but in 12/13 patients with obstructive ventilatory disorders in the elderly group, slight (4 pts) or moderate (8 pts), while in only one patient severe COPD existed. Unlike this, 14 (56%) of the patients in the control group of patients with COPD had moderate or severe obstructive ventilatory disorders.

Most of the literature data refer to differences in postoperative lung function changes only between the elderly and the young patients, not between the elderly and the younger COPD patients. Some of these studies demonstrated the significantly higher percentage of patients with VC <70% and PaO 2 <70 mmHg in the elderly vs. younger patients, associated with smaller decrease in both VC and FEV 1 in younger patients. [5],[15]

Operative morbidity and mortality

In the study group, three-fourth of the patients had concomitant diseases, compared with 56% of such patients in the group with COPD. The main difference between these groups related to comorbidity was a significantly higher number of patients with more than one associated disease in the group of elderly - nearly half of the patients vs. only 2/14 patients in the COPD group. Although the percentage of patients with comorbidity was slightly higher in our group than in rare studies containing these data, the distribution of diseases was similar, with arterial hypertension and cardiac arrhythmias being dominant. [19]

When discussing 0% operative mortality in the present study, it should kept in mind that the time trend in operative mortality in the elderly decreased, from ~20% in the initial reports through still high 13% in some series to 3-7% in some recent reports. [20],[21] It is also of importance that the proportion of pneumonectomies varied in these series, from 51% in the series of Thomas through 19% in the series of Ginsberg to 10% of Breyer's [20] and 6% of Ishida's series. [21] Although this proportion certainly influences the mortality rates, it would be a misleading conclusion that only patients with pneumonectomy and octogenarians are at high risk of early postoperative death. In 1992, Romano and Mark demonstrated that the adjusted odds ratio for death was 3.6 times greater in septuagenarians when compared with patients younger than age 60. [22] In the aforementioned series of Thomas (10) with 7.4% in-hospital deaths in the elderly, mortality rates following bilobectomy, lobectomy, and lesser resection were 4/34 (11.11%), 22/291 (7.56%), and 0/39, respectively. Among factors that could contribute to this still high mortality rate after lobectomy in the elderly, lateral position and one-lung ventilation with alternative lung inflation and deflation during a long period of surgery could influence the physiological status of the lung in the elderly. [23]

While the early-stage lung cancer in the octogenarian is a fatal disease, in recent studies, the long-term survival of septuagenarian patients has been shown to be comparable to that of younger patients. [24] It means that early postoperative deaths can be prevented in different ways. In the analyzed group of elderly patients, bronchoscopic aspiration of accumulated bronchial secretions with imminent or developed athelectasis was preferred to intensive physiotherapy alone. In addition, early rising from bed was the common policy, both in our and also in patients from other reported series. [25]

The cause of the lower complication rate (23.3%) in the elderly group of the present study compared with the 38-55% complication rate most frequently cited in the literature is the consequence of two facts: f0 irst, we did not count as complications pre-existing diseases, presenting as comorbidity. Second, in most published reports, the complication rates referred to all types of resections, including standard and extended pneumonectomies. The lower complication rate in the elderly compared with the COPD patients in the present study, despite the opposite comorbidity rate in these groups, can be explained by the poor quality of lungs in COPD patients, which accounted for most postoperative complications in this group (10/15 patients had prolonged air leak as the only complication).

However, operation-adjusted data demonstrated a 22.8% cardiovascular and a 14.4% nonfatal pulmonary complication rate after resections lesser than pneumonectomy in the elderly. Differences in the operative morbidity in the present study between the elderly and the COPD group (23.3% vs. 60%) and the diversity of complications in the latter, even with 44% COPD patients without comorbidity, confirmed previous reports that advanced age should not be regarded as an independent prognostic factor if resection lesser than pneumonectomy is anticipated.

Survival

Survival of the elderly patients in the present study was slightly superior than in COPD patients. But, when discussing survival in the elderly patients, it is likely that septuagenarians should be analyzed separately from octogenarians. Otherwise, the overall pool of data contributes to confusion, ranging from better survival in younger age groups (despite more advanced-staged disease) to completely comparable survival. [26],[27],[28] Moreover, while some authors consider early-stage lung cancer in the octogenarian a fatal disease, other reports showed similar survival figures between patients aged 70 and 74, 75 and 79, and beyond 80 years. [29],[30],[31] It should be kept in mind that the proportion of stage I patients in series reporting elderly patients is higher than in series also reporting patients from all age groups. Thus, our data are in line with reports finding similar overall 5-year survival in elderly and younger patients, [32] provided the expected survival benefit is counterweighted with appropriately assessed operative risk.

In conclusion, the pattern of the lung function changes after lobectomy in the elderly is similar to that in patients with COPD. The explanation for such a finding needs further investigation. Despite a high proportion of concomitant diseases, the age by itself does not carry a prohibitively high risk of operative mortality and morbidity.

 
   References Top

1.Jaklitsch MT, Mery CM, Audisio RA. The use of surgery to treat lung cancer in elderly patients. Lancet Oncol 2003;4:463-71.  Back to cited text no. 1  [PUBMED]  [FULLTEXT]
2.Matsuoka H, Okada M, Sakamoto T, Tsubota N. Complications and outcomes after pulmonary resection for cancer in patients 80 to 89 years of age. Eur J Cardiothorac Surg 2005;28:380-3.  Back to cited text no. 2  [PUBMED]  [FULLTEXT]
3.Massard G, Moog R, Wihlm JM, Kessler R, Dabbagh A, Lesage A, et al . Bronchogenic cancer in the elderly: Operative risk and long-term prognosis. Thorac Cardiovasc Surgeon 1996;44:40-5.  Back to cited text no. 3    
4.Naunheim KS, Kesler KA, D'Orazio SA, Fiore AC, Judd DR. Lung cancer surgery in the octogenarian. Eur J Cardiothorac Surg 1994;8:453-6.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]
5.Sullivan V, Tran T, Holmstrom A, Kuskowski M, Koh P, Rubins JB, et al . Advanced age does not exclude lobectomy for non-small cell lung carcinoma. Chest 2005;128:2671-6.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]
6.Harpole DH, De Camp MM Jr, Daley J, Hur K, Oprian CA, Henderson WG, et al . Prognostic models of thirty-day mortality and morbidity after major pulmonary resection. J Thorac Cardiovasc Surg 1999;117:969-79.  Back to cited text no. 6    
7.Smith TJ, Penberthy L, Desch CE, Whittemore M, Newschaffer C, Hillner BE, et al . Differences in initial treatment patterns and outcomes of lung cancer in the elderly. Lung Cancer 1995;13:235-52.  Back to cited text no. 7  [PUBMED]  [FULLTEXT]
8.Leveille SG, Guralnik JM, Ferrucci L, Langlois JA. Aging successfully until death in old age: Opportunities for increasing active life expectancy. Am J Epidemiol 1999;149:654-64.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]
9.Port JL, Kent M, Korst RJ, Lee PC, Levin MA, Flieder D, et al . Surgical resection for lung cancer in the octogenarian. Chest 2004;126:733-8.  Back to cited text no. 9  [PUBMED]  [FULLTEXT]
10.Thomas P, Sielezneff I, Ragni J, Giudicelli R, Fuentes P. Is lung cancer resection justified in patients aged over 70 years? EurJ Cardiothorac Surg 1993;7:246-51.  Back to cited text no. 10    
11.Tsai CM, Perng RP, Huang WL. Lung cancer in young Chinese. Cancer Detect Prev 1988;11:235-38.  Back to cited text no. 11  [PUBMED]  
12.Koizumi K, Tanaka S, Haraguchi S, Matsushima S, Gomibuchi M. Evaluation of the prognosis of patients with stage I non-small cell lung cancer with respect to predicted postoperative lung function. Nippon Kyobu Geka Gakkai Zasshi (J Jpn Assn Thorac Surg) 1996;44:162-8.  Back to cited text no. 12    
13.Wang J, Olak J, Ferguson MK. Diffusing capacity predicts operative mortality but no long-term survival after resection for lung cancer. J Thorac Cardiovasc Surg 1999;117:581-7.  Back to cited text no. 13  [PUBMED]  [FULLTEXT]
14.Hansen MM, Hoyt JW. Postoperative care. In: Cohen E, editor. The practice of thoracic anesthesia. Philadelphia, PA: Lippincott; 1995. p. 343-83.  Back to cited text no. 14    
15.Sawada S, Komori E, Nogami N, Bessho A, Segawa Y, Shinkai T, et al . Advanced age is not correlated with either short-term or long-term postoperative results in lung cancer patients in good clinical condition. Chest 2005;128:1557-63.  Back to cited text no. 15  [PUBMED]  [FULLTEXT]
16.Nugent AM, Steele IC, Carragher AM, McManus K, McGuigan JA, Gibbons JR, et al . Effect of thoracotomy and lung resection on exercise capacity in patients with lung cancer. Thorax 1999;54:334-8.  Back to cited text no. 16  [PUBMED]  [FULLTEXT]
17.Subotic DR, Mandaric DV, Eminovic TM, Gajic MM, Mujovic NM, Atanasijadis ND, et al . Influence of chronic obstructive pulmonary disease on postoperative lung function and complications in patients undergoing operations for primary non-small cell lung cancer. J Thorac Cardiovasc Surg 2007;134:1292-9.  Back to cited text no. 17  [PUBMED]  [FULLTEXT]
18.Baldi S, Ruffini E, Harari S, Roviaro GC, Nosotti M, Bellaviti N, et al . Does lobectomy for lung cancer in patients with chronic obstructive pulmonary disease affect lung function? A multicenter national study. J Thorac Cardiovasc Surg 2005;130:1616-22.  Back to cited text no. 18    
19.Aoki T, Yamato Y, Tsuchida M, Watanabe T, Hayashi J, Hirono T. Pulmonary complications after surgical treatment of lung cancer in octogenarians . Eur J Cardiothorac Surg 2000;18:662-5.  Back to cited text no. 19  [PUBMED]  [FULLTEXT]
20.Breyer RH, Zippe C, Pharr WF, Jensik RJ, Kittle CF, Faber LP. Thoracotomy in patients over age 70 years: 10 years' experience. J Thorac Cardiovasc Surg 1981;81:187-93.  Back to cited text no. 20  [PUBMED]  
21.Ishida T, Yokoyama H, Kaneko S, Sugio K, Sugimachi K. Long-term results of operations for non-small cell lung cancer in the elderly. Ann Thorac Surg 1990;50:919-22.  Back to cited text no. 21  [PUBMED]  
22.Romano PS, Mark DH. Patient and hospital characteristics related to in-hospital mortality after lung cancer resection. Chest 1992;101:1332-7.  Back to cited text no. 22    
23.Cohen E. Physiology of the lateral position and one-lung ventilation. In: Cohen E, editor. The practice of thoracic anesthesia. Philadelphia, PA: Lippincott; 1995. p. 144-59.  Back to cited text no. 23    
24.Yellin A, Benfield JR. Surgery for bronchogenic carcinoma in the elderly. Am Rev Respir Dis 1985;131:197-8.  Back to cited text no. 24    
25.Matsuoka H, Tsubota N, Yoshimura M, Kubota M, Murotani A. Epidural fentanyl infusion for pain relief after thoracotomy. Jpn J Chest Surg 1991;5:706-11.  Back to cited text no. 25    
26.Ramalingam S, Pawlish K, Gadgeel S, Demers R, Kalemkerian GP. Lung cancer in young patients: Analysis of a surveillance, epidemiology, and end results database. J Clin Oncol 1998;16:651-767.  Back to cited text no. 26    
27.Ishida T, Yokoyama H, Kaneko S, Sugio K, Sugimachi K. Long-term results of operations for non-small cell lung cancer in the elderly. Ann Thorac Surg 1990;50:919-22.  Back to cited text no. 27    
28.Berggren H, Ekroth R, Malmberg R, Naucler J, William Olssen G. Hospital mortality and long-term survival in relation to preoperative function in elderly patients with bronchogenic carcinoma. Ann Thorac Surg 1984;38:633-6.  Back to cited text no. 28    
29.Gebitekin C, Gupta NK, Martin PG, Saunders NR, Walker DR. Long-term results in the elderly following pulmonary resection for non-small cell lung carcinoma. Eur J Cardiothorac Surg 1993;7:653-6.  Back to cited text no. 29  [PUBMED]  [FULLTEXT]
30.Shirakusa T, Tsutui M, Iriki N, Matsuba K, Saito T, Minoda S, et al . Results for resection of bronchogenic carcinoma in patients over the age of 80. Thorax 1989;44:189-91.  Back to cited text no. 30    
31.Mizushima Y, Noto H, Sugiyama S, Kusajima Y, Yamashita R, Kashii T, et al . Survival and prognosis after pneumonectomy for lung cancer in the elderly. Ann Thorac Surg 1997;64:193-8.  Back to cited text no. 31  [PUBMED]  [FULLTEXT]
32.Regnard JF, Calanducci F, Denet C, Santelmo N, Gharbi N, Bourareau J, et al . Rιsections pulmonaires pour cancer chez l'octogιnaire. Rev Mal Respir 1998;15:649-55.  Back to cited text no. 32    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Histological types and age distribution of lung cancer operated patients over a 20-year period: A pathohistological based study
Stojšić, J., Adžić, T., Marić, D., Subotić, D., Milovanović, I., Milenković, B., Radojičić, J., (...), Dimitrijević, D.
Srpski Arhiv za Celokupno Lekarstvo. 2011; 139(9-10): 619-624
[Pubmed]
2 The influence of comorbidity and other risk factors on early postoperative complications after lobectomy for non-small cell lung cancer | [Wpływ chorób współistniejacych i innych czynników ryzyka na wczesne powikłania po wycieciu płata płuca z powodu raka]
Kowalewski, J., Sȩdłak, A.
Kardiochirurgia i Torakochirurgia Polska. 2009; 6(4): 359-363
[Pubmed]



 

Top
Print this article  Email this article
 
  Search
 
   Next article
   Previous article 
   Table of Contents
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (180 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
    Materials and Me...
    Results
    Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed11982    
    Printed218    
    Emailed3    
    PDF Downloaded547    
    Comments [Add]    
    Cited by others 2    

Recommend this journal